Connexin43 (GJA1) is required in the population of dividing cells during fin regeneration.
نویسندگان
چکیده
In zebrafish, mutations in the gap junction gene connexin43 lead to short bony fin ray segments that give rise to the short fin phenotype. The sof(b123) mutant exhibits fins that are half the length of wild-type fins and have reduced levels of cx43 mRNA. We find that sof(b123) regenerating fins exhibit reduced levels of cell proliferation. Interestingly, the number of dividing cells per unit length of fin growth is similar between wild-type and mutant fins, suggesting that the number of cells that enter the cell cycle is specifically affected in sof(b123). Expression of cx43 is identified in mitotic cells, which further suggests that Cx43 may contribute to establishing or maintaining the population of dividing cells. Indeed, missense alleles exhibiting high or low levels of gap junctional communication reveal a correlation between defects in direct cell-cell communication, cell proliferation, and segment length. Finally, targeted gene knockdown of cx43 in adult regenerating fins recapitulates the sof(b123) phenotype, revealing that the loss of Cx43 is sufficient to reduce both cell proliferation and segment length. We hypothesize that the level of gap junctional intercellular communication among dividing cells regulates the level of cell proliferation and ultimately regulates bone growth.
منابع مشابه
Osteoblast maturation occurs in overlapping proximal-distal compartments during fin regeneration in zebrafish.
During fin regeneration, osteoblasts must continually differentiate for outgrowth of the bony fin rays. Bone maturity increases in a distal-proximal manner, and osteoblast maturation can be detected similarly when following gene expression. We find that early markers for osteoblast differentiation are expressed in a discrete domain at the distal end of the fin, just proximal to the adjacent ger...
متن کاملMutations in connexin43 (GJA1) perturb bone growth in zebrafish fins.
Mechanisms that regulate the size and shape of bony structures are largely unknown. The molecular identification of the fin length mutant short fin (sof), which causes defects in the length of bony fin ray segments, may provide insights regarding the regulation of bone growth. In this report, we demonstrate that the sof phenotype is caused by mutations in the connexin43 (cx43) gene. This conclu...
متن کاملCx43-Dependent Skeletal Phenotypes Are Mediated by Interactions between the Hapln1a-ECM and Sema3d during Fin Regeneration
Skeletal development is a tightly regulated process and requires proper communication between the cells for efficient exchange of information. Analysis of fin length mutants has revealed that the gap junction protein Connexin43 (Cx43) coordinates cell proliferation (growth) and joint formation (patterning) during zebrafish caudal fin regeneration. Previous studies have shown that the extra cell...
متن کاملThe Cx43-like Connexin Protein Cx40.8 Is Differentially Localized during Fin Ontogeny and Fin Regeneration
Connexins (Cx) are the subunits of gap junctions, membraneous protein channels that permit the exchange of small molecules between adjacent cells. Cx43 is required for cell proliferation in the zebrafish caudal fin. Previously, we found that a Cx43-like connexin, cx40.8, is co-expressed with cx43 in the population of proliferating cells during fin regeneration. Here we demonstrate that Cx40.8 e...
متن کاملEsco2 regulates cx43 expression during skeletal regeneration in the zebrafish fin.
BACKGROUND Roberts syndrome (RBS) is a rare genetic disorder characterized by craniofacial abnormalities, limb malformation, and often severe mental retardation. RBS arises from mutations in ESCO2 that encodes an acetyltransferase and modifies the cohesin subunit SMC3. Mutations in SCC2/NIPBL (encodes a cohesin loader), SMC3 or other cohesin genes (SMC1, RAD21/MCD1) give rise to a related devel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Developmental biology
دوره 317 2 شماره
صفحات -
تاریخ انتشار 2008